Fredholm Toeplitz Operators on Doubling Fock Spaces

نویسندگان

چکیده

Recently the authors characterized Fredholmn properties of Toeplitz operators on weighted Fock spaces when Laplacian weight function is bounded below and above. In present work extend their characterization to doubling with a subharmonic whose measure. The geometry induced by Bergman metric for much more complicated than that Euclidean used in all previous cases study Fredholmness, which leads considerably involved calculations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fredholm Properties of Toeplitz Operators on Dirichlet Spaces

In this paper, the Fredholm properties of some Toeplitz operators on Dirichlet spaces be discussed, and the essential spectra of Toeplitz operators with symbols in C 1 or H ∞ 1 + C 1 be computed.

متن کامل

Toeplitz Operators and Carleson Mea- sures on Generalized Bargmann-Fock Spaces

1.1. Definitions Throughout this paper, λ denotes the Lebesgue measure on C and ωo = dd|z| the Euclidean Kähler form in C, where d = √ −1 4 (∂̄ − ∂). Let φ ∈ C (C) be a function, μ a measure in C, and p ∈ [1,∞). One can define the spaces Lp(e−pφdμ) and F (μ, φ) := Lp(e−pφdμ) ∩ O(C). If the measure μ is Lebesgue measure, we simply write F (λ, φ) =: F (φ). Similarly one can define L∞(e−φ, μ) = {f ...

متن کامل

Compact operators on Banach spaces: Fredholm-Riesz

1. Compact operators on Banach spaces 2. Appendix: total boundedness and Arzela-Ascoli [Fredholm 1900/1903] treated compact operators as limiting cases of finite-rank operators. [1] [Riesz 1917] defined and made direct use of the compactness condition, more apt for Banach spaces. See [Riesz-Nagy 1952] for extensive discussion in the Hilbert-space situation, and many references to original paper...

متن کامل

Unbounded B-fredholm Operators on Hilbert Spaces

This paper is concerned with the study of a class of closed linear operators densely defined on a Hilbert space H and called B-Fredholm operators. We characterize a B-Fredholm operator as the direct sum of a Fredholm closed operator and a bounded nilpotent operator. The notion of an index of a B-Fredholm operator is introduced and a characterization of B-Fredholm operators with index 0 is given...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2022

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-021-00761-7